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ABSTRACT: Lipophilic efficiency indices such as LLE and LELP were
suggested to support balanced optimization of potency and ADMET profile.
Here we investigated the performance of LLE and LELP on multiple data
sets representing different stages of drug discovery including fragment and
HTS hits and leads, development candidates, phase II compounds, and
launched drugs. Analyzing their impact on ADME and safety properties and
binding thermodynamics, we found that both LLE and LELP help identifying
better quality compounds. LLE is sensible for the development stages but
does not prefer fragment-type hits, while LELP has an advantage for this class
of compounds and discriminates preferred starting points effectively. Both
LLE and LELP have significant impact on ADME and safety profiles;
however, LELP outperforms LLE in risk assessment at least on the present
data set. On the basis of the results reported here, monitoring lipophilic
efficiency metrics could contribute significantly to compound quality and might improve the output of medicinal chemistry
programs.

■ INTRODUCTION
Lipophilicity is one of the crucial parameters used in drug
discovery.1 Measured as the logarithm of the octanol−water
partition coefficient (log P) or as the pH-dependent
distribution coefficient (log D), it contributes to potency,2

has an inevitable role in selectivity and promiscuity,3 affects
compound solubility, determines the passive permeability of
small molecules through biological membranes,4 impacts drug
metabolism and pharmacokinetics,5 and influences adverse
effects and compound-related toxicity.6 It has been recently
shown that lipophilicity has therefore a major impact on
compound quality routinely assessed at the milestones of the
discovery process including identification of chemical starting
points, viable chemical leads,7 and development candidates.3

The low variance of lipophilicity over the past decade of drug
candidates and marketed drugs also underscores its central role
in drug discovery settings.8 On the other hand, however,
lipophilicity is, contrary to successful lead optimizations,9

typically increasing along optimization paths, and this undesired
shift is a major factor for the well documented inflation of
physicochemical properties2,3,7,10 observed in most medicinal
chemistry programs. Because multidimensional optimization
toward oral drug candidates should deliver compounds with log
P/log D between −1 and 33−6 this relatively narrow range
requires the effective control of lipophilicity. In addition to
basic parameters such as log P/log D or related measures (e.g.,
log k), lipophilic efficiency indices provides a straightforward
and meaningful way to control lipophilicity. A vast amount of
project data indicate that the quality of hits and leads have a
decisive effect on the fate of the chemotype in lead
optimization and preclinical development. There is an
increasing consensus2,3,11,12 that efficacy indices typically used

for ranking compounds or chemotypes can significantly support
medicinal chemistry programs in delivering high quality
candidates.
Lipophilic ligand efficiency (LLE) introduced by Leeson and

Springthorpe is a typical example of efficacy indices.3 Defined
as the difference of log P (or log D) and the negative logarithm
of a potency measure (pKd, pKi, or pXC50), LLE describes the
contribution of lipophilicity to potency. Compounds with
reduced complexity (e.g., fragments and leadlike chemical
matter) are typically polar compounds often with limited
potency that makes their LLE less desirable. As a consequence,
comparative evaluation of these compounds, that are otherwise
considered to be promising, is challenging. This limitation of
LLE is due to the neglected effect of ligand size that calls for an
alternative metrics. The concept of lipophilicity-corrected
ligand efficiency was first realized by LELP,7 defined as the
ratio of log P and ligand efficiency (LE) that therefore depict
the price of ligand efficiency paid in log P. LELP is meaningful
for log P values typical in most of the discovery programs and
allows the evaluation of both fragments, leadlike and druglike
compounds. Although LELP has its own limitation for
compounds with log P < 1, due to the correlation of log P
with molecular mass project compounds generally do not
possess large heavy atom count with low log P. This might be
the case for natural products that are therefore out of the scope
of comparative LELP evaluations.
Efficiency metrics have been recently evaluated on a set of

CNS drugs and candidates indicating13 that unlike LE and LLE,
LELP was able to discriminate development candidates and
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marketed drugs. Furthermore, these authors found that all of
the investigated Pfizer candidates possessing suboptimal LELP
values had been terminated along the drug discovery/
development pathway. The unprecedented performance of
LELP prompted us to investigate lipophilic efficiency metrics
LLE and LELP in a large and diverse data set that includes
fragment hits and corresponding leads, HTS hits and
corresponding leads, successful leads, compounds that entered
phase II trials, candidates, and drugs. These studies revealed
that both LLE and LELP have a unique character when
assessing the lipophilic efficiency at different stages of drug
discovery and that these evaluations could contribute
significantly to the overall quality of candidate drugs.

■ METHODS
Lipophilic efficiency metrics, LLE and LELP, have been evaluated
from three different perspectives: (i) lipophilic efficiency in medicinal
chemistry optimizations; (ii) impact of lipophilic efficiency on
ADMET properties; (iii) the role of lipophilic efficiency in
optimization strategies including conventional scheme guided and
thermodynamics guided approaches.
Eight compound sets have been compiled such as fragment hits,

corresponding leads, HTS hits and corresponding leads, successful
leads, compounds that entered phase II trials, development candidates,
and marketed drugs. Fragment hits (N = 100) and leads (N = 95)
were obtained from the literature,14−17 and HTS hits (N = 319) and
HTS leads (N = 319) were collected by Keserű and Makara.7

Successful leads were reported by Perola et al. (N = 60).9 Drugs and
phase II (P2) compounds, which entered P2 trials, were collected from
Thomson Reuters Integrity database18 using the criteria of marketed
drugs or the furthest trial being phase II, respectively, and having
experimentally measured affinity on human “enzyme”, “receptor”, or
“channel” targets and data that was published after 1960 (N = 210).
Drugs downloaded from Thomson Reuters Integrity database were
added to drugs reported by Perola et al.9 and Wager et al.13 Finally,
this collection of marketed drugs was focused on those administered
orally (N = 302). Data sets are available from the original papers and
in Thomson Reuters Integrity database.
The octanol−water partition coefficient (log P) was calculated by

the property calculator (cxcalc) of ChemAxon, version 5.3.6.19 In the
case of the ADME and safety analysis, we used the whole data set
published by Wager et al., including LELP and LLE values, because the
candidate structures were not disclosed. In all other cases, LELP was
calculated by the number of heavy atoms times log P divided by the
binding free energy. Binding free energies were calculated by the ΔG =
RT ln(potency) formula, where potency was estimated by the available
Ki or IC50 values. Graphs and statistical analysis was carried out by
Origin 7 (OriginLab, Northampton, MA) and Statistica 9 (StatSoft,
Tulsa, OK).

■ LIPOPHILIC EFFICIENCY IN MEDICINAL
CHEMISTRY OPTIMIZATIONS

Hit to Lead Optimization. Our first objective was to
investigate the two lipophilic efficiency metrics LLE and LELP,
in preclinical settings. Five data sets such as fragment hits and
leads, HTS hits and leads, and leads of marketed drugs, so-
called successful leads, were collected from literature sources.
Despite the sharp difference in the mean log P, low LLE values
were found for both fragment and HTS hits (2.5 and 2.5,
respectively; see Figure 1 and Supporting Information Table 1).
Similar values are due to the generally lower potency and log P
of fragment hits and the usually higher potency and log P of
HTS hits. HTS leads had mean LLE values similar to that of the
successful leads, while fragment leads possessed somewhat
higher values, 3.6, 3.8, and 3.9, respectively. Both HTS and
fragment hits had significantly lower mean LLE values

compared to that of fragment, HTS, and successful leads.
Hit-finding strategies investigated here provided similar LLE,
because there was no separation between fragment hits and
HTS hits, or fragment leads and HTS leads. Analyzing average
LLE data on the horizon of a typical discovery project, we
found that (i) mean LLE values were in line with research
stages (hit and lead), (ii) LLE was not sensitive for hit
discovery approaches, and (iii) LLE did not differentiate
successful leads from other leads. Analysis of the corresponding
LELP values revealed that the fragment hits have the lowest
mean LELP value of 5.4, which was followed by successful leads
(mean value of 8.8) and fragment leads (mean value of 10.2)
(Figure 2). Somewhat higher mean LELP values were observed

for HTS leads (mean value of 11.8) and HTS hits (mean value
of 12.0). A significant LELP difference (p < 0.05) could be
observed as fragment hits were compared to fragment leads,
HTS hits, HTS leads, and successful leads. Changes in LELP
were also significant, comparing successful leads and HTS hits
or HTS leads. Focus on the HTS hits and leads led to an
improvement in the mean LE; meanwhile, log P was increased,
and LELP did not change. On the contrary, hit to lead
optimization of fragments slightly decreased the mean LE,
increased log P, and consequently markedly increased the mean
LELP. Increasing LELP values associated to hit to lead
optimizations indicate that potency optimization at this phase

Figure 1. LLE−log P plot of the investigated subsets. All data are
mean values with error bars representing standard errors.

Figure 2. LELP−log P plot of the investigated subsets. All data are
mean values with error bars representing standard errors. Lines
marked as LE = 0.2, LE = 0.3, and LE = 0.4 are LE isovalues calculated
from LELP and log P data.
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is typically performed at the expense of lipophilicity. Our
analysis points out that hit and lead data sets can be categorized
into three groups including fragment hits, successful leads, and
the most populated group consisting HTS hits, fragment leads,
and HTS leads. Our interpretation is that (i) fragment hits have
unique and desirable lipophilic efficiency, (ii) successful leads
still have proper mean LELP values and they can be
distinguished from HTS and fragment hits and fragment
leads, (iii) fragment leads have LELP typically better than that
of the HTS leads, (iv) lipophilic efficiency of HTS hits is pretty
much similar to that of the HTS leads.
Lead Optimization. Starting from a viable lead, the

primary objective of lead optimization is the identification of
a development candidate suitable for a first in man study.
Investigating the impact of lipophilic efficiency on lead
optimization, we considered further subsets including com-
pounds that had entered phase II trials (P2 compounds) and
marketed drugs both having an acceptable ADME and
pharmacokinetic profile in man. At this stage of the analysis,
we used the following subsets: (i) successful leads, (ii) fragment
leads, (iii) HTS leads, (iv) fragment + HTS leads, and (v) all
leads (fragment + HTS + successful leads). Successful leads,
fragment leads, fragment + HTS leads, and all leads had mean
LLE values of 3.8, 3.9, 3.3, 3.7, and 3.7, respectively, while the
P2 compounds and launched drugs possessed LLE values of 5.2
and 5.0, respectively (Figure 1). Figure 1 indicates that P2
compounds and marketed drugs have LLE much better than
that of the leads from any source. Interestingly, we found that
LLE does not discriminate between successful leads and all
leads, and P2 compounds and drugs. Focusing on the discovery
process, we clearly distinguished the development stages by
their LLE values, but mean LLE shows virtually no difference
between the lead subsets considered in this study. In the case of
LELP, successful leads, fragment leads, HTS leads, fragment +
HTS leads, and all leads had mean values of 8.8, 10.2, 11.8,
11.4, and 11.1, respectively (Figure 2). P2 compounds and
marketed drugs showed mean LELP of 8.5 and 6.37,
respectively. From a process perspective, a gradual, monotonic
decrease in LELP can be observed in the course of HTS leads,
fragment + HTS leads, fragment leads, all leads, successful

leads, P2 compounds, and marketed drugs. Most importantly,
successful leads had a mean LELP value significantly lower than
that of the fragments leads, HTS leads, and their combination.
The mean LELP of successful leads was similar to that of the P2
compounds and strikingly higher than that of the marketed
drugs. In fact, the latter’s have a LELP profile similar to that of
the fragment hits. In summary, both LLE and LELP showed
strong correlation with the development phase, and despite
LLE, LELP was able to discriminate between lead discovery
strategies and could differentiate successful and all the other
leads. Consequently, LLE and LELP monitor the improvement
of compound quality along the discovery path effectively.
Pairwise comparison of corresponding LLE and LELP values
separates leads, successful leads from P2 compounds, and
marketed drugs (Figure 3), suggesting that LLE- and LELP-
based assessment of compound quality directs discovery
programs toward the desirable drug space.

Impact of Lipophilic Efficiency on ADMET Properties.
Analyzing Pfizer candidates and marketed drugs, Wager et al.
conducted an elegant study to explore the chemical space of
CNS drugs.13 This work spanned from descriptive analysis of
physicochemical profiles via alignment of ADME and safety
attributes until comparison of efficiency indices of the two
databasets. These authors found that LELP, unlike LLE and LE,
was able to discriminate drugs from candidates. This
observation prompted us to investigate the impact of lipophilic
efficiency on ADMET properties in depth. To achieve this goal,
the in vitro ADME and safety attributes of all compounds
mentioned in ref 13 were pooled together. Lipophilic ligand
efficiency metrics (LLE and LELP) were analyzed in the
context of three pharmacokinetic and three safety parameters
such as passive apparent permeability, P-glycoprotein efflux
liability, unbound intrinsic clearance and inhibition of CYP2D6
or CYP3A4 enzymes, inhibition of the hERG potassium
channel, and cell viability. In fact, we challenged LLE and LELP
in separating the compounds with attractive or undesirable in
vitro properties, as these features are crucial when selecting
candidates with favorable pharmacokinetic and safety profile.
First, we focused on pharmacokinetics-related features such

as permeability, microsomal stability, and active transport

Figure 3. LELP versus LLE for the different subsets investigated. All data are mean values with error bars representing the standard error values.
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properties. Permeability has a dominant role in adsorption and
distribution. It is routinely assessed in vitro using epithelial cell
lines that spontaneously form a confluent polarized monolayer,
thereby serving as a feasible model for the assessment of
epithelial transport. Wager et al. classified compounds as having
low, moderate, and high permeability based on their Papp values
< 2.5, 2.5 < Papp < 10 and Papp > 10 (units are 10−6 cm/s),
respectively.13 Here, compounds with low and moderate
permeability have been pooled together to yield statistically
relevant populations in each class. We found that compounds
with high permeability have a mean LELP (5.5) much lower
than those in the moderate or low permeability group (5.5 and
8.9, respectively; see Figure 4 and Supporting Information
Table 3). Mean LLE values, however, were found to be pretty
much similar in the two groups (6.3 and 6.5, respectively),
showing no correlation with the permeability data.
Metabolic clearance, commonly estimated by the in vitro

intrinsic clearance observed during incubation with liver

microsomes, limits the maximal concentration and half-life of
compounds and might hamper their development. Analysis of
LLE and LELP values in the low and high clearance groups
revealed that compounds with high metabolic stability are
characterized by a mean LLE and LELP (6.9 and 4.8,
respectively) significantly better than those observed in the
high clearance group (10.8 and 5.5, respectively; see Figure 4
and Supporting Information Table 4).
A transport ratio higher than 2.5 measured in opposite

directions, apical to basolateral and basolateral to apical, is an
indicator of the active transport mainly mediated by P-
glycoprotein. Classification of compounds as transporter
substrates and nonsubstrates and evaluating them by their
LLE and LELP values resulted in a significant difference in the
case of LELP (mean 6.1 and 9.0, respectively) but no difference
in LLE values (median 6.3 and 6.5, respectively; see Figure 4
and Supporting Information Table 5).

Figure 4. Lipophilic efficiency metrics (LELP and LLE) versus in vitro measured pharmacokinetic parameters. All data are mean values with error
bars representing the standard error values.

Figure 5. Lipophilic efficiency metrics (LELP and LLE) versus in vitro measured safety parameters. All data are mean values with error bars
representing the standard error values.
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Next, we focused on in vitro safety measures including CYP
inhibition, hERG blockade, and cellular toxicity. Compounds
perturbing clearance mechanisms might have potential for
drug−drug interactions (DDI) that is routinely assessed by
assessing the inhibition of CYP2D6 and CYP3A4 enzymes.13 In
the Pfizer study, compounds were classified having low (<25%),
moderate (25% < inhibition < 75%), and high (>75%)
inhibition. Compounds with moderate and high inhibition
potential have been pooled together to yield statistically
relevant populations in each class (Figure 5 and Supporting
Information Tables 6 and 7). LELP values were higher for
compounds with moderate and high CYP2D6 inhibition (8.25)
than for those with low inhibitory potential (6.6), although the
difference was not significant. LLE values were similar (mean
values 6.3, 6.3) in the two groups of compounds (Figure 5 and
Supporting Information Table 6).
Considering the CYP3A4 data set, LELP values were

significantly higher (mean 12.1) for compounds with moderate
and high inhibition than for those with low inhibition (6.56)
(Figure 5 and Supporting Information Table 7), and a similar
statistically significant difference was observed in LLE values
(6.4 and 5.0, respectively).
Blocking the hERG potassium channel may result in

prolongation of the QT interval of cardiac rhythm and has
thereby emerged as one of the most important in vitro
parameters of cardiotoxicity.20 Mean LELP values decreased
significantly for compound sets representing high (mean 9.8),
moderate (8.4), and low (4.3) risk of inhibition. Mean LLE
values changed periodically with no statistical significance
(Figure 5 and Supporting Information Table 8).
THLE cell viability was the last safety parameter published by

Wager et al.13 Desirable compounds had to possess IC50 values
higher than 100 μM (HighCv class) while compounds below
the threshold had high risk to induce cellular toxicity (LowCv
class). In this case, both LLE and LELP showed significant
separation for low (mean LLE = 5.3, mean LELP = 10.2) and
high (mean LLE = 6.5, mean LELP = 6.2) cell viability classes
(Figure 5 and Supporting Information Table 9).
In summary, evaluation of pharmacokinetic and safety

parameters revealed that LELP has benefits over LLE, as
compounds with acceptable in vitro ADMET profiles are
discriminated from compounds with significant liabilities.
Consequently, the number of violated in vitro ADME or safety
end-point criteria showed higher correlation with LELP than
with LLE (Figure 6A,B). Compounds with low LELP value
(around 4) have a high chance to pass all of the ADME and
safety criteria, while compounds having a high LELP value,
typically higher than 10, would have higher propensity to fail
because of ADME and safety violations.
The most important difference between LLE and LELP is

that the latter depends not only on log P but also on molecular
size. LELP therefore combines the two most important
physicochemical parameters, MW and log P, in a unique way.
LLE is a linear function of log P while its correlation with LELP
is nonlinear, but proportional, yielding increased penalty for
compounds in the high log P space. Leeson et al. concluded
that log P is the most important molecular property that
changed less over time in launched oral drugs than other
properties.3 Hughes et al. also emphasized the role of
lipophilicity in toxicological adverse effects studied on 245
preclinical Pfizer compounds,6 and it is a general indicator of
promiscuity.2,3,21 Because desolvation terms change parallel
with lipophilicity, it might rationalize the generally good

performance of lipophilic ligand efficiency metrics on predicting
promiscuity. On the basis of our analysis, it seems that this
effect is better represented in LELP than in LLE and is in line
with the off-target effects of Pfizer compounds observed in in
vitro ADMET profiling. Size dependency, that is also
incorporated in other, recently published ADME scoring
functions such as MPO13 or ADMEScore,2 strikingly
distinguishes LELP from LLE. LE used in LELP is a more
straightforward measure of protein−ligand interactions, and
therefore ligand specificity, than potency (pAct) used in LLE,
because the latter may increase simply by virtue of making
many contacts.22 Recently, Arrowsmith published a brief
analysis on phase II failures within 2008−2010 concluding
that 19% of the cases were still due to safety issues, a finding
that urges the early evaluation of safety liabilities and decisions
on chemical scaffolds.23 Potency addiction24 that results in high
potency at the expense of undesirable log P and size should be
controlled effectively. Our present results suggest that LELP
may serve as a useful guide to realize candidates with balanced
potency and ADMET profile.

The Role of Lipophilic Efficiency in Optimization
Strategies. Optimization strategies, exemplified here by the
Topliss scheme,25 provide qualitative and practical guidelines to
achieve the desired improvement in potency. Exploitation of
the SAR knowledge for potency in combination with the
ADMET-sensitive LELP profile may provide novel viewpoints
that would facilitate multidimensional optimizations. The
procedure is illustrated on a prototype aromatic compound
with log P = 3, pAct = 8, and Nh = 36 (see Figure 7, compound
1) that is further optimized by introducing new substituents to

Figure 6. Mean LLE (A) and LELP (B) values for compounds
violating a given number of in vitro ADME or safety end-point criteria
(Papp, Clearence, Pgp substrates, CYP inhibition, hERG inhibition,
and cell viability). Error bars represent the standard error values.
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its aromatic ring. Considering the incremental log P
contributions of the substituents, we calculated the necessary
improvement in potency that was required to maintain the
LELP value of 10. Reynolds et al. observed that the maximal
achievable LE is size dependent.22 We calculated maximal LE as
a function of Nh to predict the maximal affinity (pActmax) that
represents a certain limit in potency optimization (Figure 7).
Using the LELP value of 10, we plotted the pActmax as the
function of log P, and the curve (Reynolds potency limit)
separates the optimization space into feasible and nonfeasible
regions. Next we collected the 30 substituents most common in
medicinal chemistry programs that span a wide range of log P.
Interestingly, compounds equipped with only 18 substituents
were found below the maximal potency line, while for the
remainder, an affinity higher than the actual Reynolds potency
limit is needed to keep LELP equal to 10. On the other hand,
introduction of the nine most polar substituents allows some
limited decrease in potency. This reflects a situation well-
known in medicinal chemistry programs that improvements in
log P result in a simultaneous decrease in potency. We feel that
the pAct−log P plot depicted in Figure 7 would facilitate the
design of new compounds with balanced properties. Similar
evaluation of group contributions by LLE, especially LLEAT, has
been published during the preparation of this manuscript.26

■ IMPLICATIONS ON BINDING THERMODYNAMICS

From a thermodynamic point of view, potency optimization
can be realized by various strategies such as enthalpic or
entropic optimizations.27 Binding entropy relies primarily on
hydrophobic effects and is typically optimized more readily
than enthalpic contributions. The latter is a direct measure of
the net change in the number and/or strength of the
noncovalent, specific bonds formed upon binding.28 Although
changes in binding thermodynamics are difficult to predict, we
were interested in whether lipophilic efficacy indices impact
enthalpic or entropic components. Hypothetically, enthalpy-
driven optimizations require the formation of novel specific
interactions frequently realized by introducing polar groups that
is reflected in LLE and LELP values. In the previous sections,
we showed that LLE and LELP could support medicinal
chemistry optimizations. Considering the increasing role of
thermodynamics-guided medicinal chemistry programs,27 we
evaluated their performance using thermodynamic data from
both early- and late-phase optimizations.
The potential of LLE and LELP is first highlighted in the

early optimizations of renin inhibitors. Optimization of
diaminopyrimidine-type renin inhibitors at Pfizer has been
supported by crystallography and monitoring of binding
thermodynamics.29 Starting from the advanced hit, compound
33 (Figure 8), resulted in five leadlike compounds exemplified

as compounds 34−38. Comparison of compound 33 and
compound 34 shows a favorable change in binding enthalpy
that is rationalized by extending compound 33 with the
methoxypropyl side chain toward the S3 subpocket. Compound
35, a phenyl-substituted derivative of compound 34, was more
active due to beneficial changes in entropy, but its lipophilicity
was increased detrimentally. In terms of LLE and LELP, we
found similar trends; compound 34 has LLE and LELP values
much better than that of compound 33. Further, basically
entropic optimization of compound 34 to compound 35,
however, was characterized by undesired changes in both of the
lipophilicity indices. Compound 36 and 37 have somewhat
lower but comparable binding enthalpy and improved potency

Figure 7. pAct(LELP = 10)−log P plot for the optimization of
compound 1. The graph depicts the potency required to maintain
LELP = 10 for the optimized compounds (compounds 2−32).
Detection limit and the maximal achievable potency (Reynolds
potency limit)22 are colored green and violet, respectively. Heavy
atom count isovalues (gray lines) were drawn using five-atom
increments.

Figure 8. Diaminopyrimidine-type renin inhibitors (33−38).
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as compared to compound 34. Compound 37, having the most
favored LLE and LELP, shows a unique balance in potency,
enthalpy and entropy contributions, and lipophilicity. Intro-
duction of an additional phenyl group to compound 37
(compound 38) increased the lipophilicity and enhanced the
entropy contribution without significant improvement in
potency that is in line with the unfavorable change in both
LLE and LELP. In this particular set of compounds (33−38),
binding enthalpy showed reasonable correlation with LELP (r2

= 0.646) while the correlation with LLE was weaker (r2 =
0.339), which is somewhat lower than that found with log P (r2

= 0.388). Both LLE and LELP ranked the enthalpically most
favored compound 34 at the top two positions. Interestingly,
the most potent compound (35) had the highest lipophilicity

(log P = 4.3) and the second most favored binding entropy;
thus, it was ranked last by LELP and fifth by LLE.
The relationship between lipophilic efficiency metrics and

binding thermodynamics was then further investigated on late-
phase optimizations published by the Freire group.30−34 The
first example is a pair of HIV inhibitors with high structural
similarity but markedly different thermodynamic profiles.
Oxidation of the thioether moiety in 39 (KNI-10033) changed
enthalpy and entropy contributions significantly but kept the
potency constant (Table 1, Figure 9). The enthalpy-driven
binding of 40 (KNI-10075) is characterized by better LLE and
LELP values relative to the enthalpically less favored analogue
39. Crystal structure of the complexes revealed that the binding
enthalpy can be attributed to an additional hydrogen bond
formed between one of the sulfonamide oxygens of 40 and the

Table 1. Binding Thermodynamics and Lipophilic Efficiency Indices of Compounds Delivered by Medicinal Chemistry
Programs and Marketed Drugs

Optimization

name ΔG [kcal/mol] −TΔS [kcal/mol] ΔH [kcal/mol] Nh log P LELP LLE

Renin Inhibitors
33 −7.5 2.0 −9.5 26 3.6 12.6 1.8
34 −8.6 5.9 −14.5 25 2.8 8.0 3.4
35 −9.8 0.2 −10.0 31 4.3 13.5 2.9
36 −9.5 3.5 −13.0 28 3.5 10.3 3.4
37 −9.3 4.0 −13.3 27 1.4 4.0 5.4
38 −9.3 −0.4 −8.9 35 3.5 13.1 3.3
HIV Protease Inhibitors
39 −14.9 −6.7 −8.2 54 2.3 8.4 8.6
40 −14.6 −2.5 −12.1 56 0.2 0.7 10.5
Plasmepsin II Inhibitors
41 −10.6 −9.4 −1.2 44 4.7 19.7 3.0
42 −9.7 −3.7 −6 45 3.7 17.0 3.4
43 −12.7 −7.2 −5.5 45 3.7 13.0 5.6

Marketed Drugs

name ΔG [kcal/mol] −TΔS [kcal/mol] ΔH [kcal/mol] Nh log P LELP LLE
Statins
fluvastatin −9 −9 0 30 3.8 12.8 2.7
pravastain −9.7 −7.2 −2.5 30 1.6 5.1 5.4
cerivastatin −11.4 −8.1 −3.3 33 2.6 7.5 5.7
atorvastatin −10.9 −6.6 −4.3 41 5.4 20.3 2.6
rosuvastatin −12.3 −3 −9.3 33 1.9 5.2 7.1
HIV Protease Inhibitors
indinavir −12.4 −14.2 1.8 45 2.8 10.2 6.2
saquinavir −13 −14.2 1.2 49 3.2 11.9 6.3
nelfinavir −12.8 −15.9 3.1 40 4.7 14.7 4.6
ritonavir −13.7 −9.4 −4.3 50 5.2 19.1 4.8
amprenavir −13.2 −6.3 −6.9 35 2.4 6.4 7.2
lopinavir −15.1 −11.3 −3.8 46 4.7 14.3 6.3
atazanavir −14.3 −10.1 −4.2 51 4.5 16.2 5.9
tipranavir −16.6 −13.9 −2.7 42 7.8 19.8 4.3
darunavir −15 −2.3 −12.7 38 2.8 7.1 8.1

Figure 9. HIV-protease inhibitors (39 and 40).
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amide nitrogen of Asp 30B at the binding site of HIV-1
protease. The introduction of a polar, hydrogen bond acceptor
into 39 decreased the log P but has virtually no effect on the
potency, though this example shed light on the benefit of using
lipophilic efficiency indices over ligand efficacy or potency
alone. The suggested pAct−log P scheme may aid the design of
such modifications. The next example is the thermodynamics-
guided optimization of plasmepsin II inhibitors (Table 1, Figure
10), an aspartic protease considered as a promising antimalarial
target.34 The binding of 41 (KNI-10026) is entropy-driven;
consequently, both LLE and LELP ranked this compound low.
KNI-10007 (42) and KNI-10006 (43) have better lipophilic
efficiency indices and improved binding thermodynamics. In
fact, 43 having the highest affinity with significant enthalpic
contribution was ranked first. The same number of heavy atoms
and the same log P predicted for 42 and 43 results that LLE
and LELP of these compounds are only influenced by potency.
Accordingly, the difference in binding enthalpy is marginal,
while for 43 there is a significant improvement in binding
entropy due to the additional burial of hydrophobic atoms,
increased desolvation, and by the release of unstable water
molecules from the binding pocket.
The evolution of FDA-approved drugs in certain drug classes

such as HIV-1 protease inhibitors and statins was studied from
a thermodynamic point of view.31−34 These data sets represent
another challenge for investigating the relationship of binding
thermodynamics and lipophilic efficiency. In the statin class,
rosuvastation, having the highest LLE (7.1) and the second best
LELP (5.2), binds enthalpically. On the other hand, the
entropic fluvastatin is characterized by poor LLE and LELP
values. Among the marketed HIV protease inhibitors, the
binding of darunavir and amprenavir is enthalpy-driven. These
two drugs have clearly the best LLE and LELP in the class.
Note that entropic HIV protease inhibitors tipranavir and
lopinavir had affinity higher than that of the enthalpic darunavir
or ampreavir, representing an unbiased situation for the
evaluation of lipophilic efficiency indices.
In summary, the analysis of a limited set of thermodynamic

data suggests that lipophilic efficiency might have an impact on
the binding thermodynamics profile. This is in line with the
relationship identified between lipophilic efficiency measures
and safety data. Enthalpy-driven binding typically provides
higher specificity and better LLE and LELP. On the contrary,
entropy-driven binding that basically relies on desolvation
effects is mostly achieved by higher log P; thus, it increases the
promiscuity of the ligand and gives suboptimal LLE and LELP.
Although we emphasize that the thermodynamics of protein−
ligand binding is far more complex,35,36similar trends in binding
thermodynamics and lipophilic efficiency indices give further
support to the comparative analysis of LLE and LELP at the
decision points of discovery programs.

■ CONCLUSIONS
The attractiveness of increasing potency in medicinal chemistry
optimizations can be more detrimental than prosperous
without the adequate control of physicochemical parameters,
especially log P or log D. The documented addiction to potency
calls for a feasible measure that combines potency and
lipophilicity that is useful for postsynthesis evaluations,
supports prospective design, and facilitates identifying high
quality compounds at discovery milestones. Lipophilic
efficiency indices such as LLE and LELP are allowing this
concept to be realized. In this work, we investigated these
measures in several aspects such as comparison of data sets
representing different stages of drug discovery, ADME and
safety status, and binding thermodynamics. The results suggest
that monitoring LLE and LELP both have clear benefits;
however, these metrics possess different characteristics: (i) LLE
is sensible for the development stages and does not prefer
fragment-type hits that are otherwise considered to be
promising starting points for lead discovery; (ii) LELP
incorporates molecular size and penalizes the increase in log
P more than in LLE; therefore, it has an advantage for both
ADME- and safety-related issues over LLE, (iii) case studies
highlighted that both LLE and LELP support enthalpy-driven
optimizations. As a consequence, we recommend the use of
LELP in the early-phase optimizations, especially where
fragment-sized hits are compared to more complex structures,
and for the early selection of desirable lead scaffolds, and the
use of both LLE and LELP in later-phase optimizations that are
characterized by lower fluctuations in molecular size.
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(27) Ferenczy, G. G.; Keserũ, G. M. Thermodynamics guided lead
discovery and optimization. Drug Discovery Today 2010, 15 (21−22),
919−932.
(28) Ladbury, J. E.; Klebe, G.; Freire, E. Adding calorimetric data to
decision making in lead discovery: a hot tip. Nat. Rev. Drug Discovery
2010, 9 (1), 23−27.
(29) Sarver, R. W.; Peevers, J.; Cody, W. L.; Ciske, F. L.; Dyer, J.;
Emerson, S. D.; Hagadorn, J. C.; Holsworth, D. D.; Jalaie, M.;
Kaufman, M.; Mastronardi, M.; McConnell, P.; Powell, N. A.; Quin, J.
3rd; Van Huis, C. A.; Zhang, E.; Mochalkin, I. Binding
thermodynamics of substituted diaminopyrimidine renin inhibitors.
Anal. Biochem. 2007, 360 (1), 30−40.
(30) Lafont, V.; Armstrong, A. A.; Ohtaka, H.; Kiso, Y.; Mario Amzel,
L.; Freire, E. Compensating enthalpic and entropic changes hinder
binding affinity optimization. Chem. Biol. Drug Des. 2007, 69 (6), 413−
224.
(31) Freire, E.; Ohtaka, H.; Freire, E. Adaptive inhibitors of the HIV-
1 protease. Prog. Biophys. Mol. Biol. 2005, 88, 193−208.
(32) Muzammil, S.; Armstrong, A. A.; Kang, L. W.; Jakalian, A.;
Bonneau, P. R.; Schmelmer, V.; Amzel, L. M.; Freire, E. Unique
thermodynamic response of tipranavir to human immunodeficiency
virus type 1 protease drug resistance mutations. J. Virol. 2007, 81,
5144−5154.
(33) Carbonell, T.; Freire, E. Binding thermodynamics of statins to
HMG-CoA reductase. Biochemistry 2005, 44, 11741−11748.
(34) Freire, E. A thermodynamic approach to the affinity
optimization of drug candidates. Chem. Biol. Drug Des. 2009, 74 (5),
468−472.
(35) Snyder, P. W.; Mecinovic, J.; Moustakas, D. T.; Thomas, S. W.
3rd.; Harder, M.; Mack, E. T.; Lockett, M. R.; Heŕoux, A.; Sherman,
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